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Introduction

Millimeter wave (mmWave) is a special class of radar technology that uses short-

wavelength electromagnetic waves. Radar systems transmit electromagnetic wave 

signals that objects in their path then reflect. By capturing the reflected signal, a radar 

system can determine the range, velocity and angle of the objects.

mmWave radars transmit signals with a wavelength that is in the millimeter range. This 

is considered a short wavelength in the electromagnetic spectrum and is one of the 

advantages of this technology. Indeed, the size of system components such as the 

antennas required to process mmWave signals is small. Another advantage of short 

wavelengths is the high accuracy. An mmWave system operating at 76–81 GHz (with 

a corresponding wavelength of about 4 mm), will have the ability to detect movements 

that are as small as a fraction of a millimeter.

A complete mmWave radar system includes transmit (TX) and receive (RX) radio 

frequency (RF) components; analog components such as clocking; and digital 

components such as analog-to-digital converters (ADCs), microcontrollers (MCUs) and 

digital signal processors (DSPs). Traditionally, these systems were implemented with 

discrete components, which increased power consumption and overall system cost. 

System design is challenging due the complexity and high frequencies.

Texas Instruments (TI) has solved these challenges and designed complementary 

metal-oxide semiconductor (CMOS)-based mmWave radar devices that integrate TX-

RF and RX-RF analog components such as clocking, and digital components such 

as the ADC, MCU and hardware accelerator. Some families in TI’s mmWave sensor 

portfolio integrate a DSP for additional signal-processing capabilities.

TI devices implement a special class of mmWave technology called frequency-

modulated continuous wave (FMCW). As the name implies, FMCW radars transmit a 

frequency-modulated signal continuously in order to measure range as well as angle 

and velocity. This differs from traditional pulsed-radar systems, which transmit short 

pulses periodically.
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Range measurement

The fundamental concept in radar systems is the 

transmission of an electromagnetic signal that 

objects reflect in its path. In the signal used in 

FMCW radars, the frequency increases linearly 

with time. This type of signal is also called a chirp. 

Figure 1 shows a representation of a chirp signal, 

with magnitude (amplitude) as a function of time.

Figure 2 shows the same chirp signal, with 

frequency as a function of time. The chirp is 

characterized by a start frequency (fc), bandwidth (B) 

and duration (Tc). The slope of the chirp (S) captures 

the rate of change of frequency. In the example 

provided in Figure 2, fc = 77 GHz, B = 4 GHz,  

Tc = 40 µs and S = 100 MHz/µs.

An FMCW radar system transmits a chirp signal and 

captures the signals reflected by objects in its path. 

Figure 3 represents a simplified block diagram of 

the main RF components of an FMCW radar. The 

radar operates as follows:

• A synthesizer (synth) generates a chirp.

• The chirp is transmitted by a transmit antenna 

(TX ant).

• The reflection of the chirp by an object 

generates a reflected chirp captured by the 

receive antenna (RX ant).

• A “mixer” combines the RX and TX signals to 

produce an intermediate frequency (IF) signal.

A frequency mixer is an electronic component that 

combines two signals to create a new signal with a 

new frequency.

For two sinusoidal inputs x1 and x2 (Equations 1 

and 2):

(1)

(2)

The output xout has an instantaneous frequency 

equal to the difference of the instantaneous 

frequencies of the two input sinusoids. The phase 

of the output xout is equal to the difference of the 

phases of the two input signals (Equation 3):

(3)

The operation of the frequency mixer can also be 

understood graphically by looking at TX and RX 

chirp frequency representation as a function of time.

The upper diagram in Figure 4 on the following 

page shows TX and RX chirps as a function of time 

for a single object detected. Notice that the RX chirp 

is a time-delay version of the TX chirp.
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Figure 1. Chirp signal, with amplitude as a function of time.
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The time delay (t) can be mathematically derived as 

Equation 4:

(4)

where d is the distance to the detected object 

and c is the speed of light.

To obtain the frequency representation as a function 

of time of the IF signal at the output of the frequency 

mixer, subtract the two lines pre sented in the upper 

section of Figure 4. The distance between the two 

lines is fixed, which means that the IF signal consists 

of a tone with a constant frequency. Figure 4 shows 

that this frequency is St. The IF signal is valid only in 

the time interval where both the TX chirp and the RX 

chirp overlap (i.e., the interval between the vertical 

dotted lines in Figure 4).

The mixer output signal as a magnitude function 

of time is a sine wave, since it has a constant 

frequency.

The initial phase of the IF signal (F0) is the difference 

between the phase of the TX chirp and the phase 

of the RX chirp at the time instant corresponding 

to the start of the IF signal (i.e., the time instant 

represented by the left vertical dotted line in 

Figure 4). (Equation 5):

(5)

Mathematically, it can be further derived into 

Equation 6:

(6)*

In summary, for an object at a distance d from 

the radar, the IF signal will be a sine wave 

(Equation 7), then:

(7)**

where

In this introductory white paper we ignore the 

dependence of the  frequency of the IF signal on 

the velocity of the object. This is usually a small 

effect in fast-FMCW radars, and further can be 

easily corrected for once the Doppler-FFT has been 

processed. The assumption so far is that the radar 

has detected only one object. Let’s analyze a case 

when there are several objects detected. Figure 5 

shows three different RX chirps received from 

different objects. Each chirp is delayed by a different 

amount of time proportional to the distance to that 

object. The different RX chirps translate to multiple 

IF tones, each with a constant frequency.
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Figure 4. IF frequency is constant.

The upper diagram in Figure 4 shows TX and RX chirps as a function of time for a single object detected. Notice that the 
RX chirp is a time-delay version of the TX chirp. 
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*   This equation is an approximation and valid only if Slope and 
distance are sufficiently small. However, it is still true that the phase 
of the IF signal responds linearly to a small change in the distance 
(i.e., Δf=4πΔd/l).

**  In this introductory white paper we ignore the dependence of 
the frequency of the IF signal on the velocity of the object. This 
is usually a small effect in fast-FMCW radars, and further can be 
easily corrected for once the Doppler-FFT has been processed.
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This IF signal consisting of multiple tones must 

be processed using a Fourier transform in order 

to separate the different tones. Fourier transform 

processing will result in a frequency spectrum that 

has separate peaks for the different tones each 

peak denoting the presence of an object at a 

specific distance.

Range resolution

Range resolution is the ability to distinguish 

between two or more objects. When two objects 

move closer, at some point, a radar system will 

no longer be able to distinguish them as separate 

objects. Fourier transform theory states that you can 

increase the resolution by increasing the length of 

the IF signal.

To increase the length of the IF signal, the 

bandwidth must also be increased proportionally. An 

increased-length IF signal results in an IF spectrum 

with two separate peaks.

Fourier transform theory also states that an 

observation window (T) can resolve frequency 

components that are separated by more than  

1/THz. This means that two IF signal tones can 

be resolved in frequency as long as the frequency 

difference satisfies the relationship given in 

Equation 8:

(8)

where Tc is the observation interval.

Since       Equation 8 can be expressed as 

            (since B = STc).

The range resolution (dRes) depends only on the 

bandwidth swept by the chirp (Equation 9):

(9)

Thus an FMCW radar with a chirp bandwidth of a 

few GHz will have a range resolution in the order 

of centimeters (e.g., a chirp bandwidth of 4 GHz 

translates to a range resolution 3.75 cm).

Velocity measurement

In this section, let’s use phasor notation (distance, 

angle) for a complex number.

Velocity measurement with two chirps

In order to measure velocity, an FMCW radar 

transmits two chirps separated by Tc. Each reflected 

chirp is processed through FFT to detect the 

range of the object (range-FFT). The range-FFT 

corresponding to each chirp will have peaks in 

the same location, but with a different phase. The 

measured phase difference corresponds to a motion 

in the object of vTc.

The phase difference is derived from Equation 6 as 

Equation 10:

(10)

You can derive the velocity using Equation 11:

(11)

Since the velocity measurement is based on a 

phase difference, there will be ambiguity. The 

measurement is unambiguous only if |DF|< p. Using 

Equation 11 above, one can mathematically derive

Equation 12 provides the maximum relative speed 

(vmax) measured by two chirps spaced Tc apart. 

Higher vmax requires shorter transmission times 

between chirps.

Tc

Figure 6. Two-chirp velocity measurement.

amount of time proportional to the distance to that object. The different RX chirps translate to multiple IF tones, each 
with a constant frequency. 
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𝑐𝑐
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2𝑆𝑆𝑇𝑇𝑐𝑐

= 𝑐𝑐
2𝐵𝐵
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Velocity Measurement 

In this section, let’s use phasor notation (distance, angle) for a complex number. 

Velocity Measurement with Two Chirps 

In order to measure velocity, a FMCW radar transmits two chirps separated by Tc Each reflected chirp is processed 
through FFT to detect the range of the object (range-FFT). The range-FFT corresponding to each chirp will have peaks in 
the same location, but with a different phase. The measured phase difference corresponds to a motion in the object of 
vTc. 

 

Figure 6. Two-chirp velocity measurement. 

The phase difference is defined as Equation 10: 
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You can derive the velocity using Equation 11: 

𝑣𝑣 = 𝜆𝜆Δ𝛷𝛷
4𝜋𝜋𝑇𝑇𝑐𝑐
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Since the velocity measurement is based on a phase difference, there will be ambiguity. The measurement is 

unambiguous only if |∆𝛷𝛷|< π. Using equation 11  above, one can mathematically derive 𝑣𝑣 < 𝜆𝜆
4𝑇𝑇𝑐𝑐

. 

Equation 12 provides the maximum relative speed (vmax) measured by two chirps spaced Tc apart. Higher vmax requires 
shorter transmission times between chirps. 
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will generate reflective chirps with identical IF frequencies. As a consequence, the range-FFT will result in single peak, 
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not work. 
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Velocity measurement with multiple objects at 

the same range

The two-chirp velocity measurement method does 

not work if multiple moving objects with different 

velocities are at the time of measurement, both 

at the same distance from the radar. Since these 

objects are at the same distance, they will generate 

reflective chirps with identical IF frequencies. As 

a consequence, the range-FFT will result in single 

peak, which represents the combined signal from 

all of these equi-range objects. A simple phase 

comparison technique will not work.

In this case, in order to measure the speed, the 

radar system must transmit more than two chirps. It 

transmits a set of N equally spaced chirps. This set 

of chirps is called a chirp frame. Figure 7 shows the 

frequency as a function of time for a chirp frame.

The processing technique is described below using 

the example of two objects equidistant from the 

radar but with different velocities v1 and v2.

Range-FFT processes the reflected set of chirps, 

resulting in a set of N identically located peaks, but 

each with a different phase incorporating the phase 

contributions from both these objects (the individual 

phase contributions from each of these objects 

being represented by the red and blue phasors in 

Figure 8).

A second FFT, called Doppler-FFT, is performed on 

the N phasors to resolve the two objects, as shown 

in Figure 9.

w1 and w2 correspond to the phase difference 

between consecutive chirps for the respective 

objects (Equation 13):

(13)

Velocity resolution

The theory of discrete Fourier transforms teaches 

us that two discrete frequencies, w1 and w2, can be 

resolved if  Dw = w2 – w1 > 2p/N radians/sample.

Since Dw  is also defined by the following equation 

                   (Equation 10), one can mathematically 

derive the velocity resolution (vres) if the frame period 

Tf = NTc (Equation 14):

(14)

The velocity resolution of the radar is inversely 

proportional to the frame time (Tf).

Angle detection

Angle estimation

An FMCW radar system can estimate the angle of a 

reflected signal with the horizontal plane, as shown 

in Figure 10. This angle is also called the angle of 

arrival (AoA).
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In this case, in order to measure the speed, the radar system must transmit more than two chirps. It transmits a set of N 
equally spaced chirps. This set of chirps is called a chirp frame. Figure 7 shows the frequency as a function of time for a 
chirp frame.  
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phase incorporating the phase contributions from both these objects (the individual phase contributions from each of 
these objects being represented by the red and blue phasors in Figure 8) 
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4𝜋𝜋𝑇𝑇𝑐𝑐
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Velocity Resolution 

You have already seen that two discrete frequencies, ω1 and ω2, can be resolved if Δω= ω2 - ω1 > 2π/N radians/sample. 

Since Δω is also defined by the following equation ∆𝜔𝜔 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐
𝜆𝜆
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resolution(vres) if the frame period Tf = NTc (Equation 14): 
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In order to measure velocity, a FMCW radar transmits two chirps separated by Tc Each reflected chirp is processed 
through FFT to detect the range of the object (range-FFT). The range-FFT corresponding to each chirp will have peaks in 
the same location, but with a different phase. The measured phase difference corresponds to a motion in the object of 
vTc. 

 

Figure 6. Two-chirp velocity measurement. 

The phase difference is defined as Equation 10: 

∆𝛷𝛷 = 4𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐
𝜆𝜆
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𝑣𝑣 = 𝜆𝜆Δ𝛷𝛷
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Since the velocity measurement is based on a phase difference, there will be ambiguity. The measurement is 

unambiguous only if |∆𝛷𝛷|< π. Using equation 11  above, one can mathematically derive 𝑣𝑣 < 𝜆𝜆
4𝑇𝑇𝑐𝑐

. 

Equation 12 provides the maximum relative speed (vmax) measured by two chirps spaced Tc apart. Higher vmax requires 
shorter transmission times between chirps. 

vmax =
𝜆𝜆
4𝑇𝑇𝑐𝑐

  (12) 

Velocity Measurement with Multiple Objects at the Same Range 

The two-chirp velocity measurement method does not work if multiple moving objects with different velocities are at 
the time of measurement, both at the same distance from the radar. Since these objects are at the same distance, they 
will generate reflective chirps with identical IF frequencies. As a consequence, the range-FFT will result in single peak, 
which represents the combined signal from all of these equi-range objects. A simple phase comparison technique will 
not work. 

𝑣𝑣 > 𝑣𝑣𝑟𝑟𝑅𝑅𝑅𝑅 = 𝜆𝜆
2𝑇𝑇𝑓𝑓

  (14) 

The velocity resolution of the radar is inversely proportional to the frame time (Tf). 

Angle Detection 

Angle Estimation 

An FMCW radar system can estimate the angle of a reflected signal with the horizontal plane, as shown in Figure 10. This 
angle is also called the angle of arrival (AOA). 

 

Figure 10. Angle of arrival. 

Angular estimation is based on the observation that a small change in the distance of an object results in a phase change 
in the peak of the range-FFT or Doppler-FFT.This result is used to perform angular estimation, using at least two RX 
antennas as shown in Figure 11. The differential distance from the object to each of the antennas results in a phase 
change in the FFT peak. The phase change enables to estimate the AoA. 

 

Figure 11. Two antennas are required to estimate AoA. 

In this configuration, the phase change is derived mathematically as Equation 15: 

∆𝛷𝛷 =  2𝜋𝜋∆𝑑𝑑
𝜆𝜆

  (15) 

 15 Under the assumption of a planar wavefront basic geometry shows that Δ𝑑𝑑 = 𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃), where l is the distance 
between the antennas This enables to derive the angle value from a measured ∆𝜙𝜙 with Equation 16:  

𝜃𝜃 = 𝐴𝐴𝐴𝐴𝐴𝐴−1(𝜆𝜆𝜋𝜋𝜋𝜋
2𝜋𝜋𝜋𝜋

)  (16) 

Note that  ∆𝛷𝛷 depends on 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃). This is called a nonlinear dependency. 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) is approximated with a linear function 
only when 𝜃𝜃 has a small value: 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) ~ 𝜃𝜃. 

As a result, the estimation accuracy depends on AoA and is more accurate when 𝜃𝜃 has a small value.as shown in Figure 
12 
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Equation 12 provides the maximum relative speed (vmax) measured by two chirps spaced Tc apart. Higher vmax requires 
shorter transmission times between chirps. 
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Velocity Measurement with Multiple Objects at the Same Range 

The two-chirp velocity measurement method does not work if multiple moving objects with different velocities are at 
the time of measurement, both at the same distance from the radar. Since these objects are at the same distance, they 
will generate reflective chirps with identical IF frequencies. As a consequence, the range-FFT will result in single peak, 
which represents the combined signal from all of these equi-range objects. A simple phase comparison technique will 
not work. 
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Angular estimation is based on the observation that 

a small change in the distance of an object results 

in a phase change in the peak of the range-FFT or 

Doppler-FFT. This result is used to perform angular 

estimation, using at least two RX antennas as 

shown in Figure 11. The differential distance from 

the object to each of the antennas results in a phase 

change in the FFT peak. The phase change enables 

you to estimate the AoA.

In this configuration, the phase change is derived 

mathematically as Equation 15:

(15)

Under the assumption of a planar wavefront basic 

geometry shows that Dd = lsin(q), where l is the 

distance between the antennas. Thus the angle of 

arrival (q), can be computed from the measured DF  

with Equation 16:

(16)

Note that DF depends on sin(q). This is called a 

nonlinear dependency. sin(q) is approximated with a 

linear function only when q has a small value:  

sin(q) ~ q.

As a result, the estimation accuracy depends on 

AoA and is more accurate when q has a small value.

as shown in Figure 12.

Maximum angular field of view

The maximum angular field of view of the radar is 

defined by the maximum AoA that the radar can 

estimate. See Figure 13.

Unambiguous measurement of angle requires  

|Dw| < 180°. Using Equation 16, this corresponds to 

Equation 17 shows that the maximum field of view 

that two antennas spaced l apart can service is:

(17)

A spacing between the two antennas of l = l/2 

results in the largest angular field of view ± 90°.

Texas Instruments mmWave 
sensor solution

As you can see, an FMCW sensor is able to 

determine the range, velocity and angle of nearby 

objects by using a combination of RF, analog and 

digital electronic components.

Figure 14 is a block diagram of the 

different components.

TI has brought innovation to the field of FMCW 

sensing by integrating a DSP, MCU and the TX 

RF, RX RF, analog and digital components into a 

RFCMOS single chip.

radar

Angle estimation is most accurate at θ close to zero

Estimation accuracy degrades as θ approaches 90o

Figure 12. AoA estimation is more accurate for small values.
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 15 Under the assumption of a planar wavefront basic geometry shows that Δ𝑑𝑑 = 𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃), where l is the distance 
between the antennas This enables to derive the angle value from a measured ∆𝜙𝜙 with Equation 16:  
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Note that  ∆𝛷𝛷 depends on 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃). This is called a nonlinear dependency. 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) is approximated with a linear function 
only when 𝜃𝜃 has a small value: 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) ~ 𝜃𝜃. 

As a result, the estimation accuracy depends on AoA and is more accurate when 𝜃𝜃 has a small value.as shown in Figure 
12 
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  (14) 

The velocity resolution of the radar is inversely proportional to the frame time (Tf). 

Angle Detection 

Angle Estimation 

An FMCW radar system can estimate the angle of a reflected signal with the horizontal plane, as shown in Figure 10. This 
angle is also called the angle of arrival (AOA). 

 

Figure 10. Angle of arrival. 

Angular estimation is based on the observation that a small change in the distance of an object results in a phase change 
in the peak of the range-FFT or Doppler-FFT.This result is used to perform angular estimation, using at least two RX 
antennas as shown in Figure 11. The differential distance from the object to each of the antennas results in a phase 
change in the FFT peak. The phase change enables to estimate the AoA. 

 

Figure 11. Two antennas are required to estimate AoA. 

In this configuration, the phase change is derived mathematically as Equation 15: 

∆𝛷𝛷 =  2𝜋𝜋∆𝑑𝑑
𝜆𝜆

  (15) 

 15 Under the assumption of a planar wavefront basic geometry shows that Δ𝑑𝑑 = 𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃), where l is the distance 
between the antennas This enables to derive the angle value from a measured ∆𝜙𝜙 with Equation 16:  

𝜃𝜃 = 𝐴𝐴𝐴𝐴𝐴𝐴−1(𝜆𝜆𝜋𝜋𝜋𝜋
2𝜋𝜋𝜋𝜋

)  (16) 

Note that  ∆𝛷𝛷 depends on 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃). This is called a nonlinear dependency. 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) is approximated with a linear function 
only when 𝜃𝜃 has a small value: 𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃) ~ 𝜃𝜃. 

As a result, the estimation accuracy depends on AoA and is more accurate when 𝜃𝜃 has a small value.as shown in Figure 
12 

radar

-θmax θmax

Figure 13. Maximum angular field of view.

 

Figure 12. AoA estimation is more accurate for small values. 

Maximum Angular Field of View 

The maximum angular field of view of the radar is defined by the maximum AoA that the radar can estimate. See Figure 
13. 

 

Figure 13. Maximum angular field of view. 

Unambiguous measurement of angle requires |∆𝜔𝜔|<180o. Using equation 16, this corresponds to 2𝜋𝜋𝜋𝜋𝑅𝑅𝜋𝜋𝜋𝜋(𝜃𝜃)
𝜆𝜆

 < π. 

Equation 18 shows that the maximum field of view that two antennas spaced l apart can service is: 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 =  𝐴𝐴𝐴𝐴𝐴𝐴−1( 𝜆𝜆
2𝜋𝜋

)  (18) 

A spacing between the two antennas of 𝑙𝑙 =  𝜆𝜆/2 results in the largest angular field of view ±90 degrees. 

Texas Instruments mmWave Sensor Solution 

As you can see, an FMCW sensor is able to determine the range, velocity and angle of nearby objects by using a 
combination of RF, analog and digital electronic components. 

Figure 14 is a block diagram of the different components. 
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Figure 14. RF, analog and digital components of an FMCW sensor.
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TI’s RFCMOS mmWave sensors differentiate 

themselves from traditional SiGe-based solutions 

by enabling flexibility and programmability in the 

mmWave RF front-end and the MCU/HWA/DSP 

processing back-end. Whereas a SiGe-based 

solution can only store a limited number of chirps 

and requires real-time intervention to update chirps 

and chirp profiles during an actual frame, TI’s 

mmWave sensor solutions are able to store 512 

chirps with four profiles before a frame starts. This 

capability allows TI’s mmWave sensors to be easily 

configured with multiple configurations to maximize 

the amount of useful data extracted from a scene. 

Individual chirps and the processing back-end can 

be tailored “on-the-fly” for real-time application 

needs such as higher range, higher velocities, higher 

resolution, or specific processing algorithms.

The TI mmWave sensor portfolio for automotive 

scales from a high-performance front-end radar—

AWR1243 sensor to single-chip radar—AWR1443 

sensor and AWR1642 sensor. Designers can 

address advanced driver assistance systems 

(ADAS) and autonomous driving safety regulations—

including ISO 26262, which enables Automotive 

Safety Integrity Level (ASIL)-B— with the AWR 

mmWave portfolio.

The TI mmWave sensor portfolio for industrial 

includes two single-chip devices; IWR1443 

mmWave sensors integrate a hardware accelerator 

for radar signal processing, while IWR1642 

mmWave sensors use a DSP to perform the 

required processing. A DSP provides more flexibility 

and allows for software integration of other higher-

level algorithms such as tracking and classification. 

These single-chip devices provide simple access 

to high-accuracy object data including range, 

velocity and angle that enables advanced sensing 

in rising applications that demand performance and 

efficiency such as smart infrastructure, Industry 4.0 

in factory and building automation products and 

autonomous drones.

Texas Instruments has introduced a complete 

development environment for engineers working on 

industrial and automotive mmWave sensor products 

which include:

• Hardware Evaluation Modules for the

AWR1x and IWR1x mmWave sensors

• mmWave software development kit (SDK)

which includes RTOS, drivers, signal-processing

libraries, mmWave API, mmWaveLink and

security (available separately).

• mmWave Studio off-line tools for algorithm

development and analysis which includes data

capture, visualizer and system estimator.

To learn more about mmWave products, tools and 

software please visit www.ti.com/mmwave and start 

your design today.
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