

TMD3700

Color, ALS and Proximity Sensor Module

General Description

The device features advanced Proximity measurement, Digital Ambient Light Sensing (ALS) and Color Sensing (CRGB). The slim module incorporates an IR LED and factory calibrated LED driver. The Proximity detection feature provides object detection (e.g. mobile device screen to user's ear) by photodiode detection of reflected IR energy (sourced by the integrated LED).

Detect/release events are interrupt driven, and occur when proximity result crosses upper and/or lower threshold settings.

The proximity engine features offset adjustment registers to compensate for unwanted IR energy reflection at the sensor. Proximity results are further improved by automatic ambient light subtraction. The Color and ALS detection feature provides red, green, blue and clear light intensity data. Each of the C, R, G, B channels have a UV and IR blocking filters and a dedicated data converter producing 16-bit data simultaneously. This architecture allows applications to accurately measure ambient light and sense color which enables devices to calculate illuminance and color temperature, control display backlight, and chromaticity.

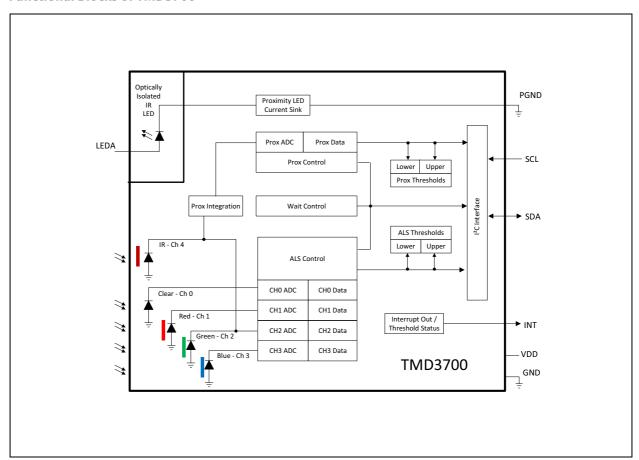
Ordering Information and Content Guide appear at end of datasheet.

Figure 1: **Added Value of Using TMD3700**

Benefits	Features
Reduced board space requirements and enables low-profile system design	Small footprint and low profile package 4.00 x 1.75 x 1.00 mm
Improved ALS angular response for more accurate measurement of lighting environment	45 degree average ALS FOV
Operating range of 200 milli-Lux to 60 kilo-Lux enables operation behind dark glass	Wide dynamic range and high sensitivity

Benefits	Features
Single device integrated optical solution	 RGB, Ambient Light Sensor (ALS) and proximity support Power management features I²C fast mode interface compatible Integral IR LED
Accurate color temperature and ambient light sensing	UV / IR blocking filtersProgrammable gain and integration time
Reduced power consumption	• 0.18µ process technology with 1.8V I ² C bus

Applications


The TMD3700 applications include:

- Color Sensing
- Ambient Light Sensing
- Mobile Phone touch screen disable

Block Diagram

The functional blocks of this device are shown below:

Figure 2: Functional Blocks of TMD3700

Page 2ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Pin Assignment

Top View of module showing pin assignment

Figure 3: TMD3700 Pinout (Top View)

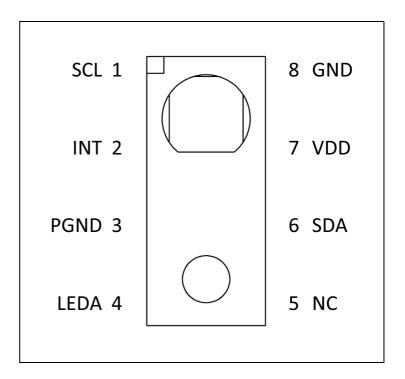


Figure 4: Pin Description

Pin Number	Pin Name	Description			
1	SCL	I ² C serial clock input terminal			
2	INT	Interrupt. Open drain output (active low).			
3	PGND	Ground for LED current sink.			
4	LEDA	LED anode			
5	NC	No connection			
6	SDA	I ² C serial data I/O terminal			
7	VDD	Supply voltage			
8	GND	Ground. All voltages are referenced to GND			

ams Datasheet Page 3
[v1-01] 2016-Jun-27
Document Feedback

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:
Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
VDD	Supply voltage	-0.3	2.2	V
LEDA	Supply voltage	-0.3	3.6	V
V _{IO}	Digital I/O terminal voltage	-0.3	3.6	V
(SDA, INT)	Output terminal current	-1	20	mA
T _{Strg}	Storage temperature range	-40	85	°C
I _{SCR}	Input current (latch up immunity) JEDEC JESD78D Nov 2011	CLASS 1		
ESD _{HBM}	Electrostatic discharge HBM S-001-2014	±2000		V
ESD _{CDM}	Electrostatic discharge CDM JEDEC JESD22-C101F Oct 2013	±	500	V

Page 4ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Electrical Characteristics

Figure 6:

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
V _{DD}	Supply voltage	1.7	1.8	2.0	V
V _{LEDA}	Voltage supplied to LEDA pin	3.0 (2)	3.3	3.6	V
T _A	Operating free-air temperature (1)	-30		85	°C

Note(s):

- 1. While the device is operational across the temperature range, performance will vary with temperature. Operational characteristics are at 25°C, unless otherwise noted.
- 2. Minimum VLED for pldrive of 100mA or less.

Figure 7:

Operating Characteristics, V_{DD} = 1.8 V, T_A = 25°C (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{OSC}	Oscillator frequency			8.0		MHz
		Active ALS state (PON=AEN=1, PEN= 0) (2)	20	90	150	μΑ
IDD	Supply current ⁽¹⁾	Idle state (PON=1, AEN=PEN=0) (3)		30	60	μ
		Sleep state ⁽⁴⁾		0.7	5.0	μΑ
VOL	INT, SDA output low voltage	6 mA sink current			0.6	V
ILEAK	Leakage current, SDA, SCL, INT, pins		-5		5	μΑ
VIH	SCL, SDA input high voltage		1.26			V
VIL	SCL, SDA input low voltage				0.54	V
T _{ACTIVE}	Time from power-on to ready to receive I ² C commands			1.5		ms

Note(s):

- 1. Values are shown at the VDD pin and do not include current through the IR LED.
- 2. This parameter indicates the supply current during periods of ALS integration. If Wait is enabled (WEN=1), the supply current is lower during periods of ALS integration. If Wait is enabled (WEN=1), the supply current is lower during periods of ALS integration. If Wait is enabled (WEN=1), the supply current is lower during periods of ALS integration. If Wait is enabled (WEN=1), the supply current is lower during periods of ALS integration. If Wait is enabled (WEN=1), the supply current is lower during the supply current is lower du
- 3. Idle state occurs when PON=1 and all functions are not enabled.
- $4. Sleep state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operational flow, SAI = 1, PON will remain a state occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the result of operation and long the policy of the policy of the policy of the policy of the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy of the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON = 0 and l^2C bus is idle. If Sleep state has been entered as the policy occurs when PON =$ high.

ams Datasheet Page 5 **Document Feedback**

Figure 8: Optical Characteristics

Parameter	Test Conditions	Clear Channel			Units
r ai ailietei	rest containons	Min	Тур	Max	Offics
	$\lambda_{D} = 465 \text{ nm LED, } 53.8 \mu\text{W/cm}^{2}$		112		
	$\lambda_D = 530 \text{ nm LED, } 43.9 \mu\text{W/cm}^2$		152		count/(µW/cm²)
Re	$\lambda_{D} = 620 \text{ nm LED, } 37.5 \mu\text{W/cm}^{2}$		193		count/(µw/cm)
Irradiance responsivity	Warm white LED, 45.6 μW/cm ²		152		
settings: AGAIN = 16x	Warm white LED, 45.6 μW/cm ²	5950	7000	8050	counts
ATIME = 400mS		IR Channel			
		Min	Тур	Max	
	$\lambda_D = 950 \text{ nm LED, } 21.1 \mu\text{W/cm}^2$		137		count/(µW/cm²)

Figure 9: ALS Operating Characteristics, VDD = 1.8 V, $T_A = 25$ °C, AGAIN = 16x, ATIME = 0xF6 (unless otherwise noted)

Parameter	Conditions	Min	Тур	Max	Units
Integration time step size		2.68	2.78	2.90	ms
Dark ADC count value	Ee = 0 μW/ cm ² AGAIN: 64x ATIME: 100ms (0xDC)	0	1	3	counts
	AGAIN: 4x		4		
Gain scaling, relative to 1x gain setting	AGAIN: 16x		16		х
	AGAIN: 64x		64		
ADC noise	AGAIN: 16x		0.005		% full scale
Lux accuracy (1)	White LED, 2700K	90	100	110	%

Note(s):

1. Not production tested. Representative result by laboratory characterization.

Page 6ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Figure 10: **Proximity Operating Characteristics**

Parameter	Conditions	Min	Тур	Max	Units
Part to part variation ⁽¹⁾	Conditions: PGAIN = 2 (4x) PLDRIVE = 8 (54mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 1 (8µs) d=23mm round target 30mm target distance	75	100	125	%
Response, absolute	Basic proximity measurement Conditions: PGAIN = 2 (4x) PLDRIVE = 16 (102mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 2 (16µs) Target material: 90% reflective surface of Kodak gray card Target Size: 100mm x 100mm Target Distance: 100mm Module held by TMD37003SH210T socket	90	113	136	counts
	Improved accuracy proximity measurement using factory programmed offsets in each device and a supplied driver		100	115	
Response, no target using offset values from 0xE6 and 0xE7	PGAIN = 2 (4x) ILEDDRIVE = 16 (102mA) PPULSE = 16 (17 Pulses) Pulse Length = 2 (16µs)	0		12	counts
Noise/Signal ⁽³⁾	PGAIN = 2 (4x) IRLEDDRIVE = 8 (54mA) PPULSE = 15 (16 pulses) PPULSE_LEN = 1 (8µs) d=23mm round target 30mm target distance			1	%

Note(s):

- 1. Production tested result is the average of 5 readings expressed relative to a calibrated response.
- 2. Representative result by characterization.
- 3. Production tested result is the average of 20 readings divided by the average response.

ams Datasheet Page 7 Document Feedback

Figure 11: Spectral Response

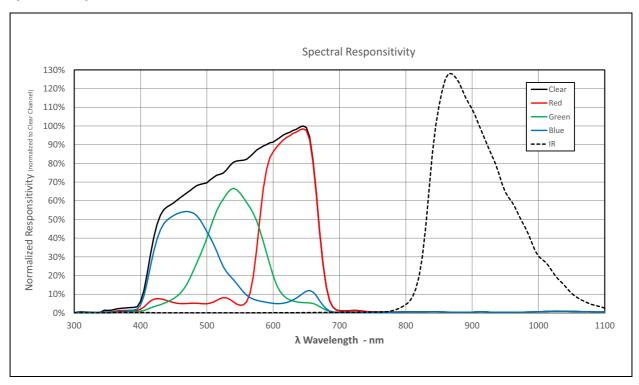
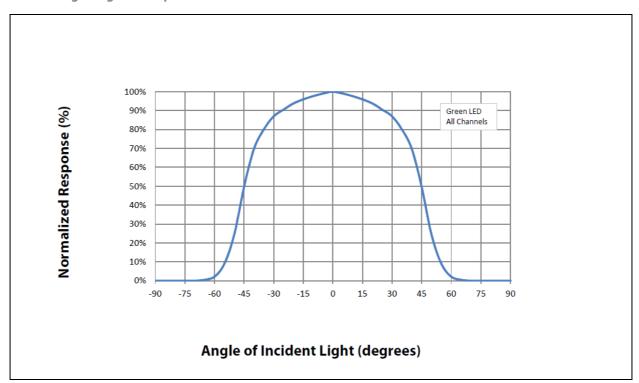
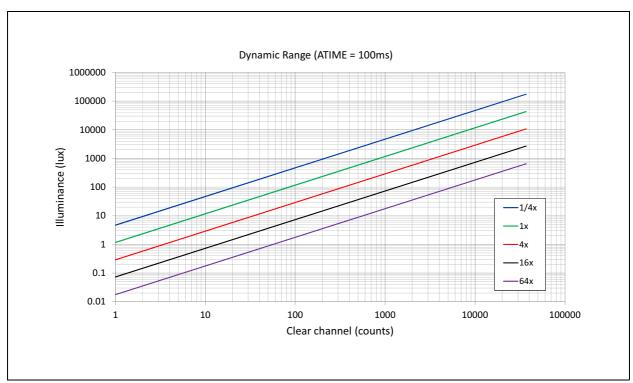



Figure 12: ALS Average Angular Response

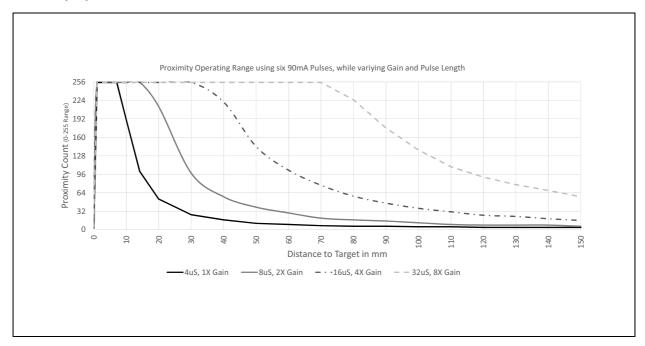
Page 8ams DatasheetDocument Feedback[v1-01] 2016-Jun-27


Figure 13: CRGB Optical Characteristics

Parameter	Test Conditions	Red / Clear Channel		Green / Clear Channel		Blue / Clear Channel	
		Min	Max	Min	Max	Min	Max
	λ _D = 465 nm	0%	20%	0%	55% ⁽¹⁾	80%	100%
Color ADC count value ratio: color / clear	λ _D = 525 nm	0%	30% ⁽¹⁾	65%	90%	0%	50% (1)
	λ _D = 615 nm	80%	110%	0%	20%	0%	20%
	White LED, 2700 k	50%	70%	24%	45%	10%	35%

Note(s):

1. Not production tested.


Figure 14: Illuminance (Lux) vs Counts (Clear Channel)

ams Datasheet Page 9
[v1-01] 2016-Jun-27 Document Feedback

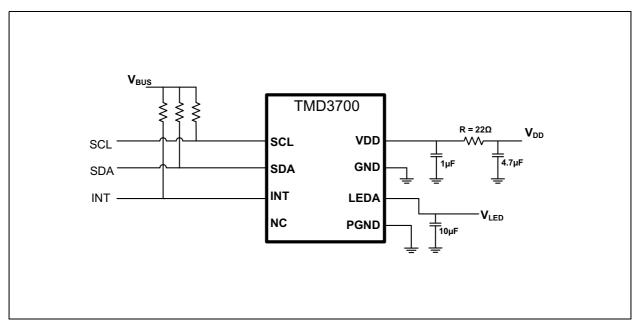


Figure 15: Proximity Operation

By varying Gain, LED drive current, number of LED pulses and LED pulse duration the proximity detection range can be adjusted.

Figure 16: Proximity Test Circuit

Note(s):

1. Place the $1\mu F$ and $10\mu F$ capacitors as close as possible to the module.

2. $V_{DD} = 1.8V$, $V_{BUS} = 1.8V$, $V_{LED} = 3.3V$.

Page 10ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

I²C Protocol

The device uses I²C serial communication protocol for communication. The device supports 7-bit chip addressing and both standard and full-speed clock frequency modes. Read and Write transactions comply with the standard set by Philips (now NXP).

Internal to the device, an 8-bit buffer stores the register address location of the desired byte to read or write. This buffer auto-increments upon each byte transfer and is retained between transaction events (I.e. valid even after the master issues a STOP command and the I²C bus is released). During consecutive Read transactions, the future/repeated I²C Read transaction may omit the memory address byte normally following the chip address byte; the buffer retains the last register address +1.

All 16-bit fields have a latching scheme for reading and writing. In general it is recommended to use I²C bursts whenever possible, especially in this case when accessing two bytes of one logical entity. When reading these fields, the low byte must be read first, and it triggers a 16-bit latch that stores the 16-bit field. The high byte must be read immediately afterwards. When writing to these fields, the low byte must be written first, immediately followed by the high byte. Reading or writing to these registers without following these requirements will cause errors.

I²C Write Transaction

A Write transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS WRITE, DATA BYTE(S), and STOP. Following each byte (9TH clock pulse) the slave places an ACKNOWLEDGE/NOT- ACKNOWLEDGE (ACK/NACK) on the bus. If NACK is transmitted by the slave, the master may issue a STOP.

I²C Read Transaction

A Read transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS, RESTART, CHIP-ADDRESSREAD, DATA BYTE(S), and STOP. Following all but the final byte the master places an ACK on the bus (9TH clock pulse). Termination of the Read transaction is indicated by a NACK being placed on the bus by the master, followed by STOP.

The I²C bus protocol was developed by Philips (now NXP). For a complete description of the I²C protocol, please review the NXP I²C design specification.

ams Datasheet Page 11
[v1-01] 2016-Jun-27 Document Feedback

Register Description

Figure 17: Register Overview

Address	Register Name	R/W	Register Function	Reset Value
0x80	ENABLE	R/W	Enables states and interrupts	0x00
0x81	ATIME	R/W	ADC integration time	0x00
0x82	PRATE	R/W	Proximity sample rate	0x1F
0x83	WTIME	R/W	Wait time	0x00
0x84	AILTL	R/W	ALS interrupt low threshold low byte	0x00
0x85	AILTH	R/W	ALS interrupt low threshold high byte	0x00
0x86	AIHTL	R/W	ALS interrupt high threshold low byte	0x00
0x87	AIHTH	R/W	ALS interrupt high threshold high byte	0x00
0x88	PILT	R/W	Proximity interrupt low threshold	0x00
0x8A	PIHT	R/W	Proximity interrupt high threshold	0x00
0x8C	PERS	R/W	ALS and proximity interrupt persistence filters	0x00
0x8D	CFG0	R/W	Wait Long	0x80
0x8E	PCFG0	R/W	Proximity pulse width and count	0x80
0x8F	PCFG1	R/W	Proximity gain and LED current	0x80
0x90	CFG1	R/W	Configuration register one	0x00
0x91	REVID	R	Revision ID	
0x92	ID	R	Device ID	0xC0
0x93	STATUS	R, SC	Device status register one	0x00
0x94	CDATAL	R	Clear ADC low data register	0x00
0x95	CDATAH	R	Clear ADC high data register	0x00
0x96	RDATAL	R	Red ADC low data register	0x00
0x97	RDATAH	R	Red ADC high data register	0x00
0x98	GDATAL	R	Green ADC low data register	0x00
0x99	GDATAH	R	Green ADC high data register	0x00
0x9A	BDATAL	R	Blue ADC low data register	0x00
0x9B	BDATAH	R	Blue ADC high data register	0x00
0x9C	PDATA	R	Proximity ADC data register MSBs	0x00
0x9F	CFG2	R/W	LSB of ALS gain	0x04

Page 12ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Address	Register Name	R/W	Register Function	Reset Value
0xAB	CFG3	R/W	Configuration register three	0x00
0xC0	POFFSET_L	R/W	Proximity offset magnitude	0x00-0xFF
0xC1	POFFSET_H	R/W	Proximity offset sign	0x00-0xFF
0xD7	CALIB	R/W	Calibration control	0x00
0xD9	CALIBCFG	R/W	Calibration configuration	0x00
0xDC	CALIBSTAT	R/W	Calibration status bit	0x00
0xDD	INTENAB	R/W	Interrupt enables	0x00
0xE6	POFFSET Magnitude	R/W	Factory trimmed proximity offset magnitude	0x00 - 0xFF
0xE7	POFFSET Sign	R/W	Factory trimmed proximity offset sign	0x00 - 0x01

Note(s):

- R = Read Only
- W = Write Only
- R/W = Read or Write
- SC = Self Clearing after access

ams Datasheet Page 13
[v1-01] 2016-Jun-27 Document Feedback

ENABLE Register (0x80)

Figure 18: ENABLE Register

	0x80: ENABLE							
Field	Name	Reset	Туре	Description				
7:4	Reserved	0	RW	Reserved.				
3	wen	0	RW	Wait Enable. This bit activates the wait feature. Writing a one actives the wait timer. Writing a zero disables the wait timer.				
2	pen	0	RW	Proximity Detect Enable. This field activates the proximity detection.				
1	aen	0	RW	ALS Enable. This bit actives the ALS function. Set aen=1 and pon=1 in the same command to ensure autozero function is run prior to the first measurement.				
0	pon	0	RW	Power ON. This field activates the internal oscillator to permit the timers and ADC channels to operate. Writing a one activates the oscillator. Writing a zero disables the oscillator.				

The Mode/Parameter fields should be written before aen or pen is asserted. The functions pen and aen require pon to be asserted for the respective function to operate correctly.

Page 14ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

ATIME Register (0x81)

Figure 19: **ATIME Register**

	0x81: ATIME									
Field	Name	Reset	Type		Des	cription				
		0x00	RW	Integration Time. Eight bit value that specifies the integration time in 2.81ms intervals. 0x00 indicates 2.8ms, 0x01 indicates 5.6ms. The maximum ALS value depends on the integration time. For every 2.81ms, the maximum value increases by 1024. This means that to be able to reach ALS full scale, the integration time has to be at least 64*2.8ms.						
				Value	Integration Cycles	Integration Time	Maximum ALS Value			
7:0	atime			0x00	1	2.8ms	1023			
				0x01	2	5.6ms	2047			
				•••	•••	•••				
				0x3f	63	180ms	65535			
				•••		•••	•••			
				0xff	255	721ms	65535			

The ATIME register controls the integration time of the ALS ADCs.

The timer is implemented with a down counter with 0x00 as the terminal count. The timer is clocked at a 2.8ms nominal rate. Loading 0x00 will generate a 2.8ms integration time, loading 0x01 will generate a 5.6ms integration time, and so forth.

Note(s): The RC oscillator runs at 8MHz nominal rate. This gets divided by 11 to generate the integration clock of 727kHz. One count in ATIME (nominal 2.8ms) are 2.81ms. This is 2048 integration clock cycles: 125ns*11*8*256=2.81ms.

ams Datasheet Page 15 **Document Feedback**

PRATE Register (0x82)

Figure 20: **PRATE** Register

	0x82: PRATE							
Field	Name	Reset	Type	Description				
7:0	PRATE	0x1F	RW	This register defines the duration of 1 Prox Sample, which is (PRATE + 1)*88µs				

WTIME Register (0x83)

Figure 21: **WTIME** Register

	0x83: WTIME									
Field	Name	Reset	Type		Description					
				ALS Wait Time. Eight bi between ALS cycles.	ALS Wait Time. Eight bit value that specifies the time in 2.81ms to wait between ALS cycles.					
			Value	Wait Cycles	Wait Time					
			RW	0x00	1	2.8ms/ 33.8ms				
7:0	wtime	0x00		0x01	2	5.6ms/ 67.6ms				
				0x3f	63	180ms/ 2.16s				
				0xff	255	721ms/ 8.65s				

The wait timer is implemented with a down counter with 0x00 as the terminal count. Loading 0x00 will generate a 2.81ms wait time, loading 0x01 will generate a 5.6ms wait time, and so forth; by asserting wlong, in register 0x8D the wait time is given in multiples of 33.8ms (12x).

Page 16 ams Datasheet [v1-01] 2016-Jun-27

AILTL Register (0x84)

Figure 22: **AILTL Register**

	0x84: AILTL							
Field	Name	Reset	Type	Description				
7:0	AILTL	0x00	RW	Low Byte of the Low Threshold				

This register provides the low byte of the low interrupt ALS (C channel) threshold.

AILTH Register (0x85)

Figure 23: **AILTH Register**

	0x85: AILTH							
Field	Name	Reset	Туре	Description				
7:0	AILTH	0x00	RW	High Byte of the Low Threshold				

This register provides the high byte of the low interrupt ALS (C channel) threshold.

The contents of the AILTH and AILTL registers are combined and treated as a sixteen bit threshold. If the value generated by the C channel is below the low threshold specified and the APERS value is reached, the aint bit is asserted which will assert the INT pin if aien is set.

There is an 8-bit data latch implemented that stores the written low byte until the high byte is written. Both bytes will be applied then at the same time to avoid an invalid threshold (e.g. when going from 0x00ff to 0x0100, the invalid intermediate value 0x0000 is suppressed. This implies that 1) the LSB cannot be changed without writing to the MSB and 2) that writing to the LSB of one 16-bit value and afterwards to the MSB of another 16-bit register will write all 16 bits to the MSB related register.

ams Datasheet Page 17 **Document Feedback**

AIHTL Register (0x86)

Figure 24: AIHTL Register

	0x86: AIHTL							
Field	Name	Reset	Type	Description				
7:0	AIHTL	0	RW	Low Byte of the High Threshold				

This register provides the low byte of the high interrupt threshold.

AIHTH Register (0x87)

Figure 25: AIHTH Register

	0x87: AIHTH								
Field	Name	Reset	Type	Description					
7:0	AIHTH	0	RW	High Byte of the High Threshold					

This register provides the low byte of the high interrupt threshold.

The contents of the AIHTH and AIHTL registers are combined and treated as a sixteen bit threshold. If the value generated by the C channel is above the high threshold specified and the APERS value is reached, the aint bit is asserted which will assert the INT pin if aien is set.

Page 18
Document Feedback
[v1-01] 2016-Jun-27

PILT Register (0x88)

Figure 26: **PILT Register**

	0x88: PILT							
Field	Name	Reset	Type	Description				
7:0	pilt	0	RW	Proximity ADC Channel Low Threshold				

This register provides the low interrupt threshold. If the value generated by the proximity channel is below the low threshold specified and the PPERS value is reached, the pint bit is asserted which will assert the INT pin if pien is set.

PIHT Register (0x8A)

Figure 27: **PIHT Register**

	0x8A: PIHT							
Field	Name	Reset	Type	Description				
7:0	piht	0	RW	Proximity ADC Channel High Threshold				

This register provides the high interrupt threshold. If the value generated by the proximity channel is above the high threshold specified and the PPERS value is reached, the pint bit is asserted which will assert the INT pin if pien is set.

ams Datasheet Page 19 **Document Feedback**

PERS Register (0x8C)

Figure 28: PERS Register

	0x8C: PERS									
Field	Name	Reset	Туре		Description					
				Proximity Persistence Filtering.						
				Value	Interrupt generated when					
				0	Every proximity cycle					
7:4	ppers	0	RW	1	Any proximity value outside of threshold range					
7	ppers			2	2 consecutive proximity values out of range					
				3	3 consecutive proximity values out of range					
				15	15 consecutive proximity values out of range					
				Value	Interrupt generated when					
				0	Every ALS cycle					
				1	Any ALS value outside of threshold range					
				2	2 consecutive ALS values out of range					
				3	3 consecutive ALS values out of range					
				4	5					
3:0	apers	0	RW	5	10					
				6	15					
				7	20					
				12	45					
				13	50					
				14	55					
				15	60 consecutive ALS values out of range					

Page 20ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

CFG0 Register (0x8D)

Figure 29: **CFG0** Register

	0x8D: CFG0									
Field	Name	Reset	Type	Description						
7:3	Reserved	10000	RW	Reserved. Must be set to 10000.						
2	wlong	0	RW	Wait Long. When asserted, the wait cycle is increased by a factor 12x from that programmed in the WTIME register.						
1:0	Reserved	0 0	RW	Reserved. Must be set to 00.						

This register controls the interrupt filtering capabilities of the device. Configurable filtering is provided to allow interrupts to be generated after either a proximity or ALS integration cycle or if the integration cycle has produced a result that is outside of the values specified by threshold register for some specified number of times. Separate filtering is provided for proximity and ALS functions.

ALS interrupts are generated by looking only at the ADC integration results of the C channel photodiode.

PCFG0 Register (0x8E)

Figure 30: **PCFG0** Register

	0x8E: PCFG0						
Field	Name	Reset	Type	Description			
	7:6 ppulse_len			Proximity Pulse Length.			
		1	RW	Value	Pulse Length		
7:6				0	4μs		
7.0				1	8µs		
				2	16µs		
				3	32μs		

ams Datasheet Page 21 **Document Feedback**

	0x8E: PCFG0							
Field	Name	Reset	Type	Descr	iption			
				Maximum Number of Pulses in	n Proximity.			
				Value	Number of Pulses			
	5:0 ppulse	15	RW	0	1			
5:0				1	2			
				2	3			
				63	64			

PCFG1 Register (0x8F)

Figure 31: PCFG1 Register

	0x8F: PCFG1							
Field	Name	Reset	Туре	Description				
				Proximity Gain Control. Sets the	gain of the proximity receiver.			
				Value	Gain Value			
7:6	pgain	2	RW	0	1x			
7.0	руан	2	NVV	1	2x			
				2	4x			
			3	8x				
5	Reserved	0	RW	Reserved.				
				Proximity LED Drive Strength. Th of 6mA This is the nominal value. trim procedure.				
				Value	LED Current			
4:0	pldrive	0	RW	0	6mA			
				1	12mA			
			31	192mA				

Page 22ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

CFG1 Register (0x90)

Figure 32: **CFG1** Register

	0x90: CFG1								
Field	Name	Reset	Type	Description					
7:2	Reserved	0	RW	Reserved.					
		0	RW	ALS Gain Control. Sets the	e gain of the ALS DAC.				
				Field Value	Gain				
1:0	again			00	1x				
1.0	agaiii			01	4x				
				10	16x				
				11	64x				

CFG1 Register: Register CFG1 sets the gain level for ALS measurements. The valid range of values is 0x00 - 0x03.

REVID Register (0x91)

Figure 33: **REVID Register**

	0x91: REVID							
Field	Name	Reset	Туре	Description				
7:4	Reserved	0000	R	Reserved.				
3	Reserved	0	R	Reserved.				
2:0	rev_id	010	R	Revision Number Identification				

ams Datasheet Page 23 Document Feedback

ID Register (0x92)

Figure 34: ID Register

0x92: ID							
Field	Name	Reset	Type Description				
				Part Number Identification.			
7:2	ID	110000	R	Value	Meaning		
			110000				
1:0	Reserved			Reserved.			

STATUS Register (0x93)

Figure 35: STATUS Register

	0x93: STATUS						
Field	Name	Reset	Type	Description			
7	asat	0	R, SC	ALS Saturation. This flag is set for analog saturation writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			
6	psat	0	R, SC	Proximity Saturation. Indicates that an ambient- or reflective-saturation event occurred during a previous proximity cycle. writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			
5	pint	0	R, SC	Proximity Interrupt. Indicates that the device is asserting a proximity interrupt. writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			
4	aint	0	R, SC	ALSIntr. Indicates that the device is asserting an ALS interrupt. writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			
3	cint	0	R, SC	Calibration Interrupt. writing a 1 will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			
1	psat_ reflective	0	R, SC	psat interrupt is from reflective light saturation writing a 1 to psat or psat_reflective will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1			

Page 24ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

	0x93: STATUS					
Field	Name	Reset	Type	Description		
0	psat_ ambient	0	R, SC	psat interrupt is from ambient light or idac threshold saturation writing a 1 to psat or psat_ambient will clear this status flag; to enable clear-by-read function, the register CFG3.int_read_clear must be set 1		

STATUS flags are reset with reading from STATUS address, or with writing 1 to dedicated bits of STATUS address.

CDATAL Register (0x94)

Figure 36: CDATAL Register

	0x94: CDATAL					
Field	Name	Reset	Туре	Description		
7:0	CDATAL	0	RO	Low Byte of C Channel Data. If pcap_calib is active, then low byte of this result is stored here		

CDATAH Register (0x95)

Figure 37: CDATAH Register

	0x95: CDATAH						
Field	Name	Reset	Type	Description			
7:0	CDATAH	0	RO	High Byte of C Channel Data. If pcap_calib is active, then high byte of this result is stored here			

RDATAL Register (0x96)

Figure 38: RDATAL Register

0x96: RDATAL						
Field	Name	Reset	Type	Description		
7:0	RDATAL	0	RO	Low Byte of R Channel Data.		

ams Datasheet Page 25
[v1-01] 2016-Jun-27 Document Feedback

RDATAH Register (0x97)

Figure 39: RDATAH Register

0x97: RDATAH						
Field	Name	Reset	Type	Description		
7:0	RDATAH	0	RO	High Byte of R Channel Data.		

GDATAL Register (0x98)

Figure 40: GDATAL Register

0x98: GDATAL						
Field	Id Name Reset Type Description					
7:0	7:0 GDATAL 0 RO Low Byte of G Channel Data.					

GDATAH Register (0x99)

Figure 41: GDATAH Register

0x99: GDATAH							
Field Name Reset Type Description							
7:0 GDATAH 0 RO High Byte of G Channel Data.							

BDATAL Register (0x9A)

Figure 42: BDATAL Register

0x9A: BDATAL						
Field	Name	Reset	Type	Description		
7:0	BDATAL	0	RO	Low Byte of B Channel Data.		

Page 26ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

BDATAH Register (0x9B)

Figure 43: **BDATAH Register**

0x9B: BDATAH							
Field Name Reset Type Description							
7:0	7:0 BDATAH 0 RO High Byte of B Channel Data.						

PDATA Register (0x9C)

Figure 44: **PDATA Register**

0x9C: PDATA						
Field Name Reset Type Description						
7:0	PDATA	0	RO	Prox ADC Data MSB 9:2		

ams Datasheet Page 27 Document Feedback

CFG2 Register (0x9F)

Figure 45: CFG2 Register-ALS Gain

	0x9F: CFG2							
Field Name Reset Type Description				Description				
7:3	Reserved	0	RW	Reserved. Set to 0.				
2	againl	1	RW	This is the LSB of gain_als (gain_als[0]) Overall ALS Gain Control. If this bit is set to 0 then all gains are divided by 2 (except, in case ltf_gainmax is set).				
1:0	Reserved	0	RW	Reserved. Set to 0.				

Figure 46: ALS Attenuation Settings

ALS Gain Settings							
Gain	again[1]	again[0]	againl				
Jani	0x90.1	0x90.0	0x9F.2				
1	0	0	1				
4	0	1	1				
16	1	0	1				
64	1	1	1				

Page 28ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

CFG3 Register (0xAB)

Figure 47: **CFG3** Register

	0xAB: CFG3								
Field	Name	Reset	Type		Description				
7	int_read_clear	0	RW	reset afte	If set to 1, interrupt flags in STATUS register (0x93) are reset after I ² C reads to the STATUS register; otherwise the interrupt flags will not be reset.				
6:5	Reserved	0	R, SC	Reserved	Reserved. Set to 0.				
4	sai	0	RW	of the pr generate Note tha rather us PON 0 1 1 The way	oximity/Al ed. t SAI does es the inte SAI X 0 1 to "wake u	not modify any errupt signal to t INT (low active) x 1	register bits directly, it urn OFF the oscillator. Oscillator OFF ON ON OFF (SAI induced sleep) om SAI-sleep is by		
3:0	Reserved	0	RW	Reserved. Set to 0.					

POFFSET_L Register (0xC0)

Figure 48: POFFSET_L Register

0xC0: POFFSET_L						
Field Name Reset Type Description						
7:0	poffset_l	0	R, SC	Offset compensation for proximity channel (magnitude)		

ams Datasheet Page 29 Document Feedback

POFFSET_H Register (0xC1)

Figure 49: POFFSET_H Register

	0xC1: POFFSET_H						
Field	Field Name Reset Type			Description			
0	poffset_h	0	R, SC	Offset compensation for proximity channel (sign)			

CALIB Register (0xD7)

Figure 50: CALIB Register

	0xD7: CALIB								
Field	Name	Reset	Type	Description					
7:6	Reserved	0	RO	Reserved. Set to 0.					
5	electrical_calibration	0	RW_SM	If set, do electrical offset calibration (diodes disabled) instead of optical. Otherwise, do optical calibration. In either case, the result is stored in the POFFSET_L/H registers. This flag is cleared after calibration is completed This flag is redundant, software could just: set gdiode_disab=0xf set concap_intinn=1 start calibration However, since electrical calibration is done automatically at the first time PON gets asserted, the function is there anyway, so it's made availabe to the user here.					
4:1	Reserved	0	WS_SC	Reserved. Set to 0.					
0	start_offset_calib	0	RW_SM	Start Offset Calibration. The result is stored in the POFFSET registers. The calib_finished flag is asserted afterwards. Calibration can be stopped by writing a 0 to this bit.					

Page 30ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

CALIBCFG Register (0xD9)

Figure 51: CALIBCFG Register

0xD9: CALIBCFG							
Field	Name	Reset	Type	Description			
				ADC target during binary s	search		
				Value	Target		
				0	0		
				1	1		
	binsrch_target	'h2	RW	2	3		
				3	7		
				4	15		
7:5				5	31		
7.5		112	11,00	6	63		
				7	127		
				Note that this target is related in the circuit, a 10-bit target lowest 2 bits are always ignored during binary search a lignore when comparing to binsrch_target=4 (target=from the ADC are AND'ed comparing to zero. Only vataken as positive ADC value.	et is used (x4) of which the chored when checking for and zero detection. mask of which bits to be zero. E.g. 15) means that values with 0xffc0 before alues 16 or larger are		
4	Reserved	1	RW	Reserved. Set to 0.			

ams Datasheet Page 31
[v1-01] 2016-Jun-27 Document Feedback

	0xD9: CALIBCFG							
Field	Name	Reset	Type	Description				
				Prox data calculation is do consecutive windows of c the window, PDATA is upo HRM measurement	constant size. At the end of			
				Value	Window Size			
2:0	prx_data_avg	0	R_PUSH	0	disable			
				1	2			
				2	4			
				3	8			
				4	16			
				5	32			
				6	64			
				7	128			
				Out to be useful, we will reproduction version.	eset this bit to zero in the			

CALIBSTAT Register (0xDC)

Figure 52: CALIBSTAT Register

0xDC: CALIBSTAT						
Field Name Reset Type				Description		
0	calib_finished	0	R/W	Offset calibration has finished. Clear bit by writing '1' to it. Bit generates interrupt if cien is asserted.		

Page 32ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

INTENAB Register (0xDD)

Figure 53: **INTENAB** Register

	0xDD: INTENAB							
Field	Name	Reset	Type	Description				
7	asien	0	RW	Writing '1' to this bit enables asat interrupt.				
6	psien	0	RW	Writing '1' to this bit enables psat				
5	pien	0	RW	Writing '1' to this bit enables prox interrupt.				
4	aien	0	RW	Writing '1' to this bit enables als interrupt.				
3	cien	0	RW	Writing '1' to this bit enables calibration interrupt.				

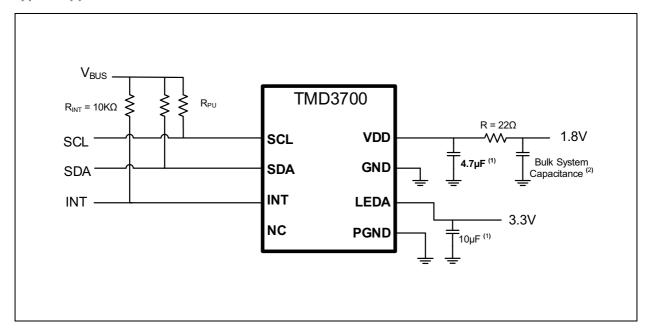
POFFSET Magnitude Register (0xE6)

Figure 54: **POFFSET Magnitude Register**

0xE6: POFFSET Magnitude						
Field Name Reset Type Description						
7:0 poffset_mag 0x00 - 0xFF R Magnitude of factory trim proximity offset						

POFFSET Sign Register (0xE7)

Figure 55: **POFFSET Sign Register**


0xE7: POFFSET Sign							
Field	Field Name Reset Type Description						
7:1	Reserved			Reserved.			
0	poffset_sign	0x00 - 0x01	R	Sign of factory trim proximity offset			

ams Datasheet Page 33 Document Feedback

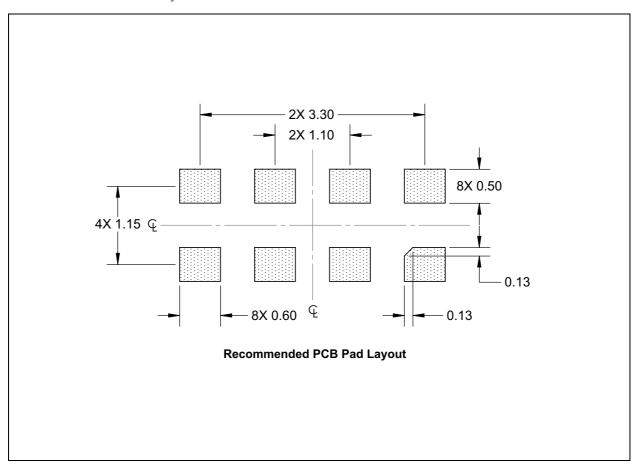
Application Information

Figure 56:
Typical Application Hardware Circuit

Note(s):

- 1. Place the $4.7\mu F$ and $10\mu F$ capacitors as close as possible to the module.
- 2. The bulk capacitor can affect the stability of a regulated supply output and should be chosen with the regulator characteristics in mind. In systems with a clean power supply the $4.7\mu F$ and 22Ω resistor may not be needed.
- 3. The value of the I^2C pull up resistors R_{PU} should be based on the 1.8V bus voltage, system bus speed and trace capacitance.
- 4. GND and PGND should be connected to the same solid ground plane as close to the device as possible.

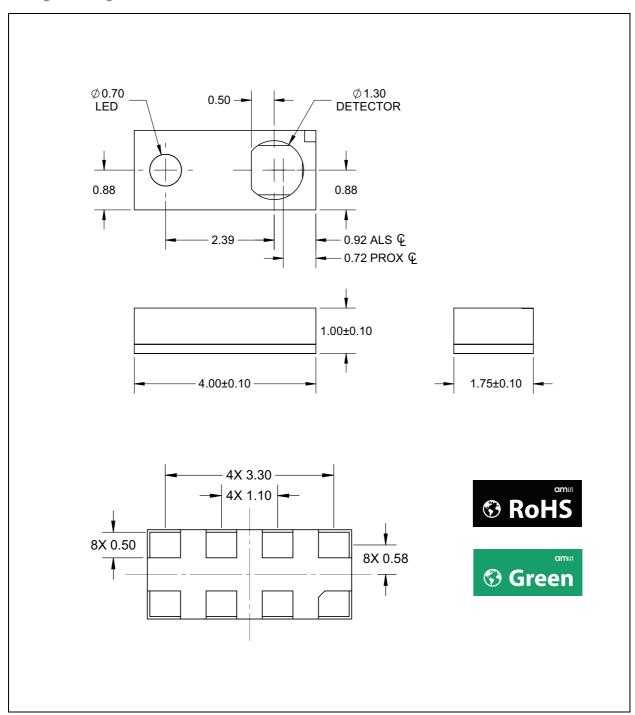
Page 34


Document Feedback

[v1-01] 2016-Jun-27

PCB Pad Layout

Figure 57: Recommended PCB Pad Layout

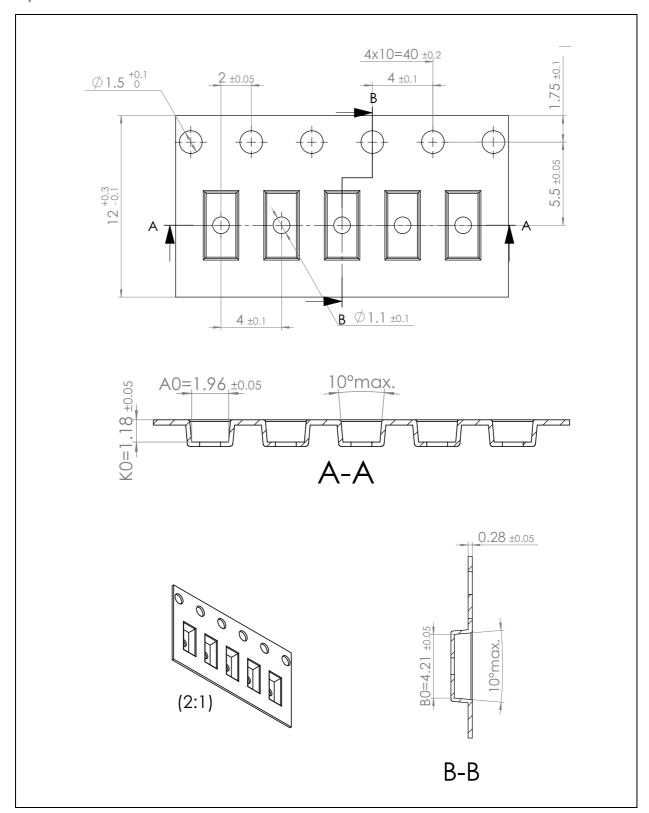


ams Datasheet Page 35
[v1-01] 2016-Jun-27 Document Feedback

Packaging Mechanical Data

Figure 58: Package Drawing

Note(s):


- 1. All linear dimensions are in millimeters.
- 2. The ALS detector is centered in the opening within a tolerance of ± 0.03 millimeters.
- 3. Contact finish is AU.
- 4. This drawing is subject to change without notice.

Page 36ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Tape & Reel Information

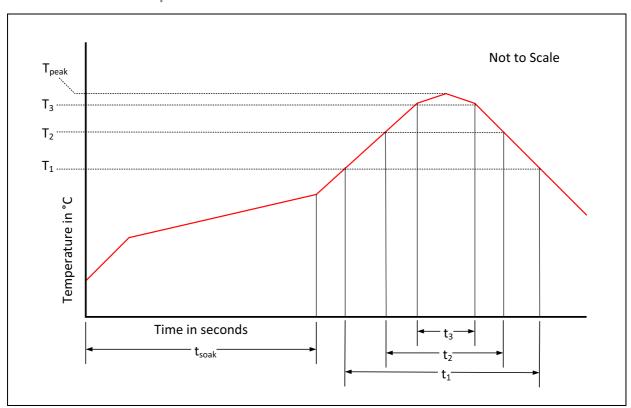
Figure 59: Tape & Reel Information

Note(s):

- 1. All linear dimensions are in millimeters.
- 2. This drawing is subject to change without notice.

ams Datasheet Page 37
[v1-01] 2016-Jun-27 Document Feedback

Soldering & Storage Information


The module has been tested and has demonstrated an ability to be reflow soldered to a PCB substrate.

The solder reflow profile describes the expected maximum heat exposure of components during the solder reflow process of product on a PCB. Temperature is measured on top of component. The components should be limited to a maximum of three passes through this solder reflow profile.

Figure 60: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5°C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217°C (T ₁)	t ₁	Max 60s
Time above 230°C (T ₂)	t ₂	Max 50s
Time above T _{peak} – 10 °C (T ₃)	t ₃	Max 10s
Peak temperature in reflow	T _{peak}	260°C
Temperature gradient in cooling		Max -5°C/s

Figure 61: Solder Reflow Profile Graph

Page 38ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Storage Information

Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package. To ensure the package contains the smallest amount of absorbed moisture possible, each device is baked prior to being dry packed for shipping.

Devices are dry packed in a sealed aluminized envelope called a moisture-barrier bag with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

Shelf Life

The calculated shelf life of the device in an unopened moisture barrier bag is 12 months from the date code on the bag when stored under the following conditions:

· Shelf Life: 12 months

• Ambient Temperature: <40°C

Relative Humidity: <90%

Rebaking of the devices will be required if the devices exceed the 12 month shelf life or the Humidity Indicator Card shows that the devices were exposed to conditions beyond the allowable moisture region.

Floor Life

The module has been assigned a moisture sensitivity level of MSL 3. As a result, the floor life of devices removed from the moisture barrier bag is 168 hours from the time the bag was opened, provided that the devices are stored under the following conditions:

• Floor Life: 168 hours

• Ambient Temperature: <30°C

• Relative Humidity: <60%

If the floor life or the temperature/humidity conditions have been exceeded, the devices must be rebaked prior to solder reflow or dry packing.

Rebaking Instructions

When the shelf life or floor life limits have been exceeded, rebake at 50°C for 12 hours.

ams Datasheet Page 39 **Document Feedback**

Ordering & Contact Information

Figure 62: Ordering Information

Ordering Code	I ² C Bus	I ² C Address	Delivery Form	Delivery Quantity
TMD37003	1.8V	39h	Tape & Reel (13")	10000 pcs/reel
TMD37003M	1.8V	39h	Tape & Reel (7")	1000 pcs/reel
TMD37007 ⁽¹⁾	1.8V	29h	Tape & Reel (13")	10000 pcs/reel

Note(s):

1. Consult factory for availability of secondary address versions.

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit:

www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

Page 40

Document Feedback

[v1-01] 2016-Jun-27

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

ams Datasheet Page 41
[v1-01] 2016-Jun-27 Document Feedback

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Page 42

Document Feedback

[v1-01] 2016-Jun-27

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

ams Datasheet Page 43
[v1-01] 2016-Jun-27 Document Feedback

Revision Information

Changes from 1-00 (2016-May-30) to current revision 1-01 (2016-Jun-27)	Page
Updated Figure 10	7
Updated Figure 17	12

Note(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

Page 44ams DatasheetDocument Feedback[v1-01] 2016-Jun-27

Content Guide

General Description 1

- 2 **Applications**
- 2 **Block Diagram**

3 **Pin Assignment**

- 4 **Absolute Maximum Ratings**
- 5 **Electrical Characteristics**

11 I²C Protocol

- I²C Write Transaction 11
- I²C Read Transaction 11

Register Description 12

- ENABLE Register (0x80)
- ATIME Register (0x81) 15
- PRATE Register (0x82)
- WTIME Register (0x83)
- AILTL Register (0x84) 17
- 17 AILTH Register (0x85)
- AIHTL Register (0x86)
- AIHTH Register (0x87) 18
- PILT Register (0x88)
- 19 PIHT Register (0x8A)
- 20 PERS Register (0x8C)
- 21 CFG0 Register (0x8D)
- PCFG0 Register (0x8E) 21
- PCFG1 Register (0x8F) 22
- CFG1 Register (0x90) 23
- 23 REVID Register (0x91)
- 24 ID Register (0x92)
- 24 STATUS Register (0x93)
- 25 CDATAL Register (0x94)
- 25 CDATAH Register (0x95)
- 25 RDATAL Register (0x96)
- RDATAH Register (0x97) 26
- GDATAL Register (0x98) 26
- GDATAH Register (0x99)
- 26 BDATAL Register (0x9A)
- 27 BDATAH Register (0x9B)
- 27 PDATA Register (0x9C)
- CFG2 Register (0x9F) 28
- 29 CFG3 Register (0xAB)
- 29 POFFSET_L Register (0xC0)
- 30 POFFSET_H Register (0xC1)
- CALIB Register (0xD7) 30
- 31 CALIBCFG Register (0xD9)
- CALIBSTAT Register (0xDC)
- 33 INTENAB Register (0xDD)
- POFFSET Magnitude Register (0xE6) 33
- POFFSET Sign Register (0xE7)

ams Datasheet Page 45 **Document Feedback** [v1-01] 2016-Jun-27

- 34 Application Information
- 35 PCB Pad Layout
- 36 Packaging Mechanical Data
- 37 Tape & Reel Information
- 38 Soldering & Storage Information
- 39 Storage Information
- 39 Moisture Sensitivity
- 39 Shelf Life
- 39 Floor Life
- 39 Rebaking Instructions
- 40 Ordering & Contact Information
- 41 RoHS Compliant & ams Green Statement
- 42 Copyrights & Disclaimer
- 43 Document Status
- 44 Revision Information

Page 46ams DatasheetDocument Feedback[v1-01] 2016-Jun-27