

# neuro | mate<sup>®</sup> - key features

# About neuromate®

- The first certified image-guided neurosurgical robot to be used in the world
- Designed specifically for neurosurgery and can be used for neuro-endoscopy, stereoencephalography (SEEG), deep brain stimulation (DBS), biopsy and several other applications
- Estimated at over \$30 million R&D investment to date<sup>1</sup>
- Renishaw is a world leader in precision engineering
- Installed systems in several countries worldwide

# **Surgical applications**

- Stereotactic neurosurgery procedures
  - DBS
  - Biopsy
  - Implantation of depth electrodes for epilepsy monitoring (SEEG)
  - Motor cortex stimulation (MCS)
- Neuroendoscopy

And many other research applications

# System benefits

- Complete procedure solution
  - Procedure specific modules / tools
  - Comprehensive surgical planning / navigation system
  - C-arm, O-arm & X-ray interfaces
  - 2D 3D registration
  - Frameless & frame-based support (all standard frames)
- Time saving in multiple trajectories
- Compact, easy to transport and easy to clean
- Designed for quick parts replacement
- Quick to set up and operate
- On-board system diagnostics
- Customisable
- Dimensions
- Frame adaptors
- Imaging modalities
- Powered tool holders for standard or custom tools
- Strong international clinical support team



## Safety features

- The *neuromate*<sup>®</sup> robot has been used for over 20 years in the clinical field for an estimated 10,000 procedures<sup>2</sup>
- Anti-collision system
- · Constant accuracy checking with redundant encoders
- Safety line constantly monitoring the status of mechanical and electrical components
- Remote control with safety trigger
- Non-backdrivable joints with no backlash ensure immediate, stiff mechanical locking in case of error condition or power outage
- Full image guidance during planning and operation

As a replacement for the targeting arc of a stereotactic frame or for a tracking system, *neuromate*<sup>®</sup> offers the following safety benefits:

- Regular calibration ensures system remains within accuracy specifications
- Reduced risk of invisible mechanical damage or wear (compared to a stereotactic frame arc)
- No need for error-prone writing down or setting of target co-ordinates
- Stable mechanical attachment (compared to a stereotactic frame or clamping systems used with a navigation system)
- Stiff tool holding

#### Renishaw plc

New Mills, Wotton-under-edge, Gloucestershire, GL12 8JR United Kingdom T +44 1453 524777 F +44 1453 524201 E neuro@renishaw.com

www.renishaw.com/neuro

# Planning and navigation software

(IVS Technology VoXim®/neuromate®)

#### General features

- Medical image analysis software
- Neurosurgical planning software
  - For stereotactic frame
  - For *neuromate*<sup>®</sup> system
- Neurosurgical execution and navigation software
  For *neuromate*<sup>®</sup> system

## **DICOM** import

- DICOM import
- Data import from DICOM files
- CT and MRI data supported
- CT gantry tilt supported

#### X-ray import

- Import of image files
- Direct scanner acquisition
- Co-registration
  - With localizer plates
  - With anatomical landmarks
- 2D / 3D / 3D fusion display supported

#### Patient database

- All data stored in the local file system
- Multiple independent databases can be defined
- Data can be archived, exported, imported, backed up to a CD, restored
- All actions are instantly and automatically saved

### Analysis tools

- Zoom
- Move and turn
- Change gray scale
- Localize coordinates of points
- Measure 2D / 3D distances, angles, areas, volumes and bone density

#### **3D reconstruction**

- Support of segmentation thresholds
- 3D cut viewing modes

#### Segmentation

- Manually definable volume segmentations
- Customizable display of multiple segmentations across fused data sets
- Computation of segmentation volume

#### Co-registration and fusion

- Co-registration modalities:
  - Frame registration (using frame localizer)
  - Device coordinates (identical imaging device and patient position)
  - Automatic matching (mutual information algorithm)
  - Point matching (user-defined anatomical or fiducial point matching)
  - Scaling





## Atlas co-registration

- Supported atlases:
  - Schaltenband-Wahren
  - Talairach-Tournoux atlas and connection map
  - Co-registration modalities:
  - Talairach transform
  - User-defined point matching

#### Trajectory definition

- Can be defined anatomically or with statistical (AC/PC) coordinates
- Definition of AC/PC
- Definition of mid-plane: essential for targeting accuracy
  Patient may be tilted or rotated
- Realignment of all views according to AC/PC line/midplane

#### **Endoscopic trajectories**

- Definition of safety volumes for endoscopic trajectories including tool insertion position
- Endoscope motion using remote control
- Full navigation capability with tool position display
- Modification of safety volume possible

#### Surgeon eye view

- Reconstructed planes parallel and perpendicular to the trajectory at various depths
- Dynamically updated view during execution (navigation capability)

#### Frame-based registration

- All standard frames
- 6 markers in at least 2 slices should be identifiable
- Automatic or manual marker identification supported
- Frame may be tilted

#### Printing a surgical plan

- Comprehensive multi-page surgical plan comprising surgical coordinates and frame coordinates
- Multiple frame configurations (e.g. reversed bow)
- Frameless registration
- Marker search
- Robot control and frameless registration
- Definition of a safety region for robot arm motion

#### Verification trajectory

 Definition and execution of a trajectory pointing to a visible anatomic landmark, to verify the patient registration

#### Execution

• Full navigation capability with tool position display

#### References

- <sup>1</sup> Renishaw internal data
- <sup>2</sup> Renishaw field service data





