Dark Mode Light Mode

Ultra-scaled EUV-enabled surrounding gate transistor SRAM cell unveiled

At this week’s Imec Technology Forum (ITF 2018) in Antwerp, imec and Unisantis announced significant progress in the joint development of a process flow targeting an SGT 6T-SRAM cell with areas between 0.0184 and 0.0205 square micrometer.

At this week’s Imec Technology Forum (ITF 2018) in Antwerp, imec and Unisantis announced significant progress in the joint development of a process flow targeting an SGT 6T-SRAM cell with areas between 0.0184 and 0.0205 square micrometer, meeting or exceeding the dense cell area in a N5 technology node.

Studies show that the vertical gate-all-around SGT-based cells have a 20-30% reduced area compared to horizontal gate-all-around FETs, while also outperforming these in terms of operating voltage, standby leakage and stability.

The Surrounding Gate Transistor is a vertical gate-all-around architecture that was developed at Unisantis as the basis for a universal silicon technology platform for DRAM, NAND, Flash, and SRAM.

“SGTs have all the advantages of horizontal gate-all-around transistors, allowing a near-perfect electrostatic control of the transistor channel,” said Professor Fujio Masuoka, Director and CTO at Unisantis and inventor of the SGT concept. “But because the channel is a vertical pillar, the concept has the potential for a significant area reduction compared to horizontal nanowire-based transistors.”

Imec and Unisantis worked out the key process flow and steps for a 6T-SRAM cell using SGT. Through a novel Design process Technology Co-Optimization (DTCO), the researchers were able to develop an SRAM bit-cell area of 0.0205 square micrometer, using a minimum pillar pitch of 50nm. This is a 24% improved scaling factor compared to the smallest SRAM designs published to date, and makes the design ready for an N5 technology node. A key technical challenge that was solved involved the mechanical stability of the pillars at the high aspect ratios that were required. Through the use of single-exposure EUV lithography, the number of process steps could be reduced, resulting in an estimated cost comparable to that of FinFET-based SRAM.

“We’re excited to present the results of this joint project,” said Dan Mocuta, the Logic Device and Integration department director at imec.

“In a concerted effort and using the tools and expertise available in house, the imec and Unisantis engineers were able to design and are well on their way to fabricating these record-scaled SRAM cells. This again proves the value of our expertise for R&D collaborations, as well as the leading-edge abilities of our cleanroom platform.”

Previous Post

Conrad introduces cables from Helukabel for wiring solar modules

Next Post

smartLINK teams with Zytronic to bring interactivity to expansive network